一般来说,对话系统可以大致分为三类:
- 任务型:一般为受限域,以完成特定领域的特定任务为目的,主流方法是基于有限状态机(FSM)的可配置化TaskFlow,而基于强化学习、监督学习等基于数据驱动的对话管理方法在实际应用中尚不成熟,应用场景如售后退款等流程明确的智能机器人。
- 问答型:受限域或开放域,主要是回答特定领域的信息咨询或开放领域的知识性问题,主流方法包括图谱问答(KBQA)、社区问答(CQA)、文档问答(MRC)等单轮问答,也可能涉及多轮问答,应用场景如酒店、旅游等领域的售前咨询。
- 闲聊型:一般为开放域,无特定目的,在开放领域内让对话有意义地进行下去即可,主流方法是基于检索的召回排序二阶段方法或基于生成的端到端模型,应用场景如聊天机器人。
其中,任务型和问答型系统具备较高的准确性,但是需要针对细分领域进行不同程度的适配与优化,在大范围应用上需要较高的成本。本文主要关注基于检索式方案的对话系统,其准确性略低但是成本较小并且领域迁移性好,非常适合用于如话术推荐等人机协同等场景。在后文中,我们主要以话术推荐应用为例,即根据对话上下文为坐席/商家提供候选回复,来介绍检索式对话系统在美团客服场景的探索与实践。以下内容会分为五个部分:第一部分介绍系统的整体架构与指标体系,第二和第三部分分别介绍召回和排序模块的工作,第四部分展示一些具体的应用示例,最后一部分则是总结与展望。